(Questio	n	Answer	Marks	Guidance		
1	(i)	P(All blu	e) $=\frac{30}{50} \times \frac{29}{49} \times \frac{28}{48} = 0.2071$	M1	For $\frac{30}{50}$ × (as part of a triple product)	$(30/50)^{3} = 0.216 \text{ scores}$ M1M0A0 $\frac{k}{50} \times \frac{(k-1)}{49} \times \frac{(k-2)}{48} \text{ for values of } k$ other than 30 scores M1M0A0 Zero for binomial unless simplifies to (3/5)^{3}	
				M1	For product of other two fractions	Correct working but then multiplied or divided by some factor scores M1M0A0	
			= 4060/19600 = 29/140 = 0.2071 the complete method	A1	CAO SC2 for P(All red) = 0.0582	Accept 0.21 with working and 0.207 without working Allow unsimplified fraction as final answer 24360/117600 oe	
1	(ii)	P(All red	$= \frac{20}{50} \times \frac{19}{49} \times \frac{18}{48} = 0.0582 \text{ or } \binom{20}{3} / \binom{50}{3} = 0.0582$	[3] M1	For P(All red)	SC2 for $1 - (30/50)^3 - (20/50)^3$ = $1 - 0.216 - 0.064 = 0.72$, providing consistent with (i) . If not consistent with (i) MOMOA0	
		=	t one of each colour) 1 - (0.2071 + 0.0582) = 0.7347 $\frac{29}{40} + \frac{57}{980} = 1 - \frac{260}{980} = 1 - \frac{13}{49} = \frac{36}{49}$	M1	For 1 – (0.2071 + 0.0582)		
		OR		A1 [3]	CAO	Allow 0.73 with working Allow unsimplified fraction as final answer 86400/117600 oe	
		P(2b,1r)-	P(1b,2r)	(M1)	For either $\frac{30}{50} \times \frac{29}{49} \times \frac{20}{48}$ or $\frac{20}{50} \times \frac{19}{49} \times \frac{30}{48}$	Allow M1 for $3 \times (30/50)^2 \times (20/50)$ or $3 \times (30/50) \times (20/50)^2$ and second M1 for sum of both if = 0.72 If not consistent with (i) M0M0A0	

G	uestion	Answer	Marks	Guidance		
		$= 3 \times \frac{30}{50} \times \frac{29}{49} \times \frac{20}{48} + 3 \times \frac{20}{50} \times \frac{19}{49} \times \frac{30}{48}$	(M1)	For sum of both or for $3 \times$ either	$\frac{\text{NB M2 also for}}{\frac{30}{50} \times \frac{20}{49} \left(\times \frac{48}{48} \right)}$	
		$= 3 \times 0.1480 + 3 \times 0.0969 = 0.7347$	(A1)	CAO	even if not multiplied by 3 Allow 0.73 or better with working	
		OR Either $\binom{30}{2} \times \binom{20}{1} / \binom{50}{3} \operatorname{or} \binom{30}{1} \times \binom{20}{2} / \binom{50}{3}$	(M1)			
			(M1) (A1)	For sum of both CAO		
2	(i)	${}^{9}C_{3} \times {}^{5}C_{3} = 84 \times 10 = 840$	M1 M1 A1	For either ⁹ C ₃ or ⁵ C ₃ For product of both correct combinations CAO	Zero for permutations	
2	(ii)	Total number of ways of answering 6 from 14 is ${}^{14}C_6 = 3003$ Probability $= \frac{840}{3003} = \frac{40}{143} = 0.27972 = 0.280$	[3] M1 M1	For ${}^{14}C_6$ seen in part (ii) For their 840/ 3003 or their 840/ ${}^{14}C_6$		
			A1 [3]	FT their 840	Allow full marks for unsimplified fractional answers	
		OR				
		${}^{6}C_{3} \times 5/14 \times 4/13 \times 3/12 \times 9/11 \times 8/10 \times 7/9 = 0.280$	(M1) (M1)	For product of fractions For ${}^{6}C_{3} \times$ correct product	SC1 for ${}^{6}C_{3} \times (5/14)^{3} \times (9/14)^{3} = 0.2420$	
			(A1)			

	Questic	on	Answer	Marks	6	uidance
	-				_	
3	(i)		X ~ B(30, 0.85) P(X = 29) = $\binom{30}{29} \times 0.85^{29} \times 0.15^{1} = 30 \times 0.0013466 = 0.0404$	M1 M1	For $0.85^{29} \times 0.15^{1} =$ 0.0013466 For $\begin{pmatrix} 30\\ 29 \end{pmatrix} \times p^{29} \times q^{1}$	With $p + q = 1$
				A1 [3]	САО	Allow 0.04 www If further working (EG P(<i>X</i> =29) –P(<i>X</i> =28)) give M2A0
3	(ii)		$\begin{split} P(X = 30) &= 0.85^{30} = 0.0076 \\ P(X \ge 29) &= 0.0404 + 0.0076 = 0.0480 \end{split}$	M1 M1 A1 [3]	For 0.85^{30} For $P(X = 29) + P(X = 30)$ (not necessarily correct, but both attempts at binomial, including coefficient in (i)) CAO	Allow eg 0.04+0.0076=0.0476 Allow 0.05 with working
3	(iii)		Expected number = 10 × 0.0480 = 0.480	M1 A1 [2]	For 10 × their (ii) FT their (ii) but if answer to (ii) leads to a whole number for (iii) give M1A0	provided (ii) between 0 and 1 Do not allow answer rounded to 0 or 1.

0	Question		Answer	Marks	Guidance		
4	(i)	(A)	P(third selected) = $0.92^2 \times 0.08 = 0.0677$ Or = 1058/15625	M1 M1 A1 [3]	For 0.92^2 For $p^2 \times q$ CAO SC1 for 'without repl =0.0690	With $p + q = 1$ With no extra terms Allow 0.068 but not 0.067 nor 0.07 acement' method 92/100×91/99×8/98	
4	(i)	(B)	P (second) + P(third) = (0.92 × 0.08) + (0.92 ² × 0.08) = 0.0736 + 0.0677 = 0.1413 = 2208/15625	M1 A1 [2]	For 0.92 × 0.08 FT their 0.0677	With no extra terms Allow 0.141 to 0.142 and allow 0.14 with working 43 from 'without replacement' method	
4	(ii)		P(At least one of first 20) = 1 - P(None of first 20)	M1	0.92 ²⁰	Accept answer of 0.81 or better from P(1) + P(2) +, or SC2 if all correct working shown but wrong answer No marks for 'without replacement' method'	
			$= 1 - 0.92^{20} = 1 - 0.1887 = 0.8113$	M1 A1 [3]	1 – 0.92 ²⁰ CAO	Allow 0.81 with working but not 0.812	

June 2012

Question Answer Marks Guidance 5 Let p = probability that a randomly selected frame is faulty B1 For definition of *p* in context Minimum needed for B1 is p =probability that frame/bike is faulty. Do not allow is p = probability that it is faulty Allow p = P(frame faulty)Definition of *p* must include word probability (or chance or proportion or percentage or likelihood but NOT possibility). Preferably as a separate comment. However can be at end of H_0 as long as it is a clear definition ' p = the probability that frame is faulty, NOT just a sentence 'probability is 0.05' Do NOT allow 'p = the probability that faulty frames have increased' H₀: p = 0.05**B**1 H_0 : p(frame faulty) = 0.05, H_1 : p(frame faulty) > 0.05 gets B0B1B1 Allow p=5%, allow θ or π and ρ but not *x*. However allow any single symbol if defined Allow $H_0 = p = 0.05$, Allow $H_0: p = \frac{1}{20}$ Do not allow H_0 : P(X=x) = 0.05, H_1 : P(X=x) > 0.05Do not allow H₀: =0.05, =5%, P(0.05), p(0052), p(x)=0.05, *x*=0.05 (unless *x* correctly defined as a probability) Do not allow H₁: $p \ge 0.05$, Do not allow H_0 and H_1 reversed Allow NH and AH in place of H₀ and H₁ For hypotheses given in words allow Maximum B0B1B1 Hypotheses in words must include probability (or chance or proportion or percentage) and the figure 0.05 oe. H₁: p > 0.05**B**1 $P(X \ge 4)$ **B**1 For notation $P(X \ge 4)$ or No further marks if point probs 1- P($X \le 3$) used - P(X = 4) = 0.0094This mark may be DO NOT FT wrong H₁ implied by 0.0109 as long But if H_1 is $p \ge 0.05$ allow the rest of the marks if earned so as no incorrect notation. $\max 7/8$ $= 1 - P(X \le 3) = 1 - 0.9891 = 0.0109$ B1* For 0.0109, indep of Or for 1 – 0.9891 previous mark

Mark Scheme

Question	Answer	Marks	Guidance	
	0.0109 < 0.05	M1*	For comparison with 5%	
	So reject H ₀	dep A1*	or significant or 'accept H ₁ '	
	There is evidence to suggest that the proportion of faulty frames has increased.	E1* Dep on A1	Must include 'sufficient evidence' or something similar s as 'to suggest that' ie an element of doubt for E1. 'Suffic evidence' or similar can be seen in the either the A mark the E mark.	cient
		[8]		
	OR <i>Critical region method:</i> Let $X \sim B(18, 0.05)$		No marks if CR not justified Do not insist on correct notat	
	$P(X \ge 3) = 1 - P(X \le 2) = 1 - 0.9419 = 0.0581 > 5\%$	(B1)	For 0.0581 as candidates have to work o two probabilities for full mar	out
	$P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.9891 = 0.0109 < 5\%$	(B1)	For 0.0109	KS
		(M1)	For at least one correct comparison with 5%	
	So critical region is {4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}	(A1)	CAO for critical region Condone $\{4, 5\}, X \ge 4$, oe	but
	4 lies in the critical region, so significant,		and significant oe not $P(X \ge 4)$	
	There is evidence to suggest that the proportion of faulty frames has increased.	(E1)		

Mark Scheme

June 2	01	2
--------	----	---

Question		A	nswer		Marks	Guidance
6 (i)	Engine size $500 \le x \le 1000$ $1000 < x \le 1500$ $1500 < x \le 2000$ $2000 < x \le 3000$ $3000 < x \le 5000$ 0.05 0.05 0.03 0.02 0.01 0 0 0 0 0 0 0.02 0.01 0 0 0 0 0 0 0 0		Group width 500 500 1000 2000 0 2000 0 2500 3000 3500 4 ngine Size	Frequency density 0.014 0.044 0.052 0.018 0.0035 0.0035	M1 A1 G1(L1)	At least 4 fds correct for M1 M1 can be also be gained from freq per 1000 – 14, 44, 52, 18, 3.5 (at least 4 correct) and A1 for all correct or freq per 500 - 7, 22, 26, 9, 1.75 Accept any suitable unit for fd, eg freq per 1000, BUT NOT FD per 1000 Allow fds correct to at least three dp If fd not explicitly given, M1 A1 can be gained from all heights correct (within one square) on histogram (and M1A0 if at least 4 correct) Allow restart with correct heights if given fd wrong For fd's all correct linear scales on both axes and label on vertical axis Label required on vert axis IN RELATION to first M1 mark ie fd or frequency density or if relevant freq/1000, etc (NOT fd/1000, but allow fd×1000, etc) Accept f/w or f/cw (freq/width or freq/class width) Ignore horizontal label and allow horizontal scale to start at 500 Can also be gained from an accurate key
	INCORRECT DIA Frequency diagram Thus frequency den gets MAX M0A0G Frequency polygon	s can get M0, nsity = frequen 0G1G0	x x x x x x x x x x x x x x x x x x x		G1(W1)	Width of bars Must be drawn at 500, 1000etc NOT 499.5 or 500.5 etc NO GAPS ALLOWED Must have linear scale. No inequality labels on their own such as 500≤S<1000, etc but allow if a clear horizontal linear scale is also given.

(Question	Answer	Marks	Guidance
			G1(H1)	Height of bars FT of heights <i>dep</i> on at least 3 heights correct and all must agree with their fds If fds not given and one height is wrong then max M1A0G1G1G0 – visual check only (within one square) –no need to measure precisely
6	(ii)	Do not know exact highest and lowest values so cannot tell what the midrange is. OR No and a counterexample to show it may not be 2750 OR (500 + 5000) / 2 = 2750. But very unlikely to be absolutely correct but probably close to the true value. Some element of doubt needed. Allow 'Likely to be correct'	E1	Allow comment such as 'Highest value could be 5000 and lowest could be 500 therefore midrange could be 2750' NO mark if incorrect calculation Sight of 1750 AND 3000 (min and max of midrange) scores E1
6	(iii)	$Mean = \frac{(750 \times 7) + (1250 \times 22) + (1750 \times 26) + (2500 \times 18) + (4000 \times 7)}{80}$ = $\frac{151250}{80} = 1891$ $\Sigma x^2 f = (750^2 \times 7) + (1250^2 \times 22) + (1750^2 \times 26) + (2500^2 \times 18) + (4000^2 \times 7))$ = $3937500 + 34375000 + 79625000 + 112500000 + 112000000$ = 342437500 $Sxx = 342437500 - \frac{151250^2}{80} = 56480469$	M1 A1 M1	For midpoints (at least 3 correct) No marks for mean or sd unless using midpoints Answer must <u>NOT</u> be left as improper fraction CAO Accept correct answers for mean (1890 or 1891) and sd (850 or 846 or 845.5) from calculator even if eg wrong S_{xx} given For sum of at least 3 correct multiples fx^2 Allow M1 for anything which rounds to 342400000
		$s = \sqrt{\frac{56480469}{79}} = \sqrt{714943} = 846$ Only an estimate since the data are grouped.	A1 E1 indep [5]	Only penalise once in part (iii) for over specification, even if mean and standard deviation both over specified. Allow SC1 for RMSD 840.2 or 840 from calculator Or for any mention of midpoints or 'don't have actual data' or 'data are not exact' oe

C	uestion	Answer	Marks	Guidance
6	(iv)	$\overline{x} - 2s = 1891 - (2 \times 846) = 199$ Allow 200	M1	For either. FT any positive mean and their positive sd/rmsd for M1 Only follow through numerical values, not variables such as s, so if a candidate does not find s but then writes here 'limit is 40.76+ 2 × standard deviation', do NOT award M1 No marks in (iv) unless using $\overline{x} + 2s$ or $\overline{x} - 2s$
		$\overline{x} + 2s = 1891 + (2 \times 846) = 3583$ Allow 3580 or 3600	A1	For both (FT) Do NOT penalise over specification here as it is not the final answer
		So there are probably some outliers	E1	Must include an element of doubt Dep on upper limit in range 3000 – 5000 Allow comments such as 'any value over 3583 is an outlier' Ignore comments about possible outliers at lower end.
6	(v)	Number of cars over 2000 cm ³ = $25/80 \times 2.5$ million = 781250 So duty raised = $781250 \times \pounds 1000 = \pounds 781$ million	M1 M1 indep A1 [3]	For 25/80× 2.5 million or (18+7) /80× 2.5 million For something × £1000 even if this is the first step CAO NB £781250000 is over specified so only 2/3
6	(vi)	Because the numbers of cars sold with engine size greater than 2000 cm ³ might be reduced due to the additional duty.	E1 [1]	Allow any other reasonable suggestion Condone 'sample may not be representative' Allow 'sample is not of NEW cars'

4766

Q	uestion	Answer	Marks	Guidance	
7 7	(i) (ii)	$P(X = 0) = 0.4 \times 0.5^{4} = 0.025$ <u>NB ANSWER GIVEN</u> $P(X = 1) = (0.6 \times 0.5^{4}) + (4 \times 0.4 \times 0.5 \times 0.5^{3})$	M1 A1 [2] M1*	For 0.5^4 For 0.6×0.5^4 seen as a single term (not multiplied or divided	
		= 0.0375 + 0.1 = 0.1375 <u>NB ANSWER GIVEN</u>	M1* M1* dep A1 [4]	by anything) For $4 \times 0.4 \times 0.5^4$ Allow 4×0.025 Watch out for incorrect methods such as (0.4/4) 0.1 <u>MUST</u> be justified For sum of both , dep on both M1's	
7	(iii)	$\begin{bmatrix} 0.35 \\ 0.3 \\ 0.25 \\ 0.2 \\ 0.15 \\ 0.1 \\ 0.05 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ r \end{bmatrix}$	G1 G1	For labelled linear scales on both axes Dep on attempt at vertical line chart. Accept P on vertical axis For heights – visual check only but last bar taller than first and fifth taller than second and fourth taller than third. Lines must be thin (gap width > line width). All correct. Zero if vertical scale not linear Everything correct but joined up tops G0G1 MAX Everything correct but f poly G0G1 MAX Everything correct but bar chart G0G1 MAX Curve only (no vertical lines) gets G0G0 Best fit line G0G0 Allow transposed diagram	
			[2]		

June 2012

C	Questio	on	Answer	Marks	Guidance
7	(iv)		'Negative' or 'very slight negative'	E1	E0 for symmetrical
1	(1)		Regarive of very signt negative	[1]	but E1 for (very slight) negative skewness even if also
				[1]	mention symmetrical
					Ignore any reference to unimodal
7	(v)		$E(X) = (0 \times 0.025) + (1 \times 0.1375) + (2 \times 0.3) + (3 \times 0.325) + (4 \times 0.175)$	M1	For Σrp (at least 3 terms correct)
	(.)		$+(5\times0.0375)$	A1	CAO
			=2.6		
			$E(X^{2}) = (0 \times 0.025) + (1 \times 0.1375) + (4 \times 0.3) + (9 \times 0.325) + 16 \times 0.175)$	M1*	For $\Sigma r^2 p$ (at least 3 terms correct)
			$+(25\times0.0375) = 0 + 0.1375 + 1.2 + 2.925 + 2.8 + 0.9375 = 8$		r (
			$Var(X) = 8 - 2.6^2$	M1*	for – their E(X) ²
				dep	
			= 1.24	AÎ	FT their $E(X)$ provided Var(X) > 0
				[5]	USE of $E(X-\mu)^2$ gets M1 for attempt at $(x-\mu)^2$ should see (-
					$(2.6)^2$, $(-1.6)^2$, $(-0.6)^2$, 0.4^2 , 1.4^2 , 2.4^2 (if E(X) correct but FT
					their E(X)) (all 5 correct for M1), then M1 for $\Sigma p(x-\mu)^2$ (at
					least 3 terms correct)
					Division by 5 or other spurious value at end gives max
					M1A1M1M1A0, or M1A0M1M1A0 if E(X) also divided by
					5.
			2		Unsupported correct answers get 5 marks.
7	(vi)		$P(\text{Total of } 3) = (3 \times 0.325 \times 0.025^2) + (6 \times 0.3 \times 0.1375 \times 0.025) +$	M1	For decimal part of first term 0.325×0.025^2
			$0.1375^3 = 3 \times 0.000203 + 6 \times 0.001031 + 0.002600 =$	M1	For decimal part of second term 0.3×0.1375×0.025
			0.000609 + 0.006188 + 0.002600 = 0.00940		
			(= 3×13/64000 + 6×33/32000 + 1331/512000)	M1	For third term – ignore extra coefficient
					All M marks above depend on triple probability products
				A1	CAO: AWRT 0.0094. Allow 0.009 with working.
				[4]	

NOTE RE OVER-SPECIFICATION OF ANSWERS

If answers are grossly over-specified, deduct the final answer mark in every case. Probabilities should also be rounded to a sensible degree of accuracy. In general final non probability answers should not be given to more than 4 significant figures. Allow probabilities given to 5 sig fig. In general accept answers which are correct to 3 significant figures when given to 4 or 5 significant figures. If answer given as a fraction and as an over-specified decimal – ignore decimal and mark fraction.

ADDITIONAL NOTES RE Q5

Comparison with 95% method If 95% seen anywhere then B1 for P($X \le 3$) B1 for 0.9891 M1* for comparison with 95% dep on B1 A1* for significant oe E1*

Smallest critical region method:

Either:

Smallest critical region that 4 could fall into is $\{4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\}$ gets B1 and has size 0.0109 gets B1, This is < 5% gets M1*, A1*, E1* as per scheme NB These marks only awarded if 4 used, not other values.

Use of *k* method with no probabilities quoted:

P(X ≥ 3) = 1 – P(X ≤ 2) > 5% P(X ≥ 4) = 1 – P(X ≤ 3) < 5% These may be seen in terms of *k* or *n*. Either k = 4 or k - 1 = 3 so k = 4 gets SC1 so CR is {4,5,6,7,8,9,10,11,12,13,14,15, 16, 17, 18} gets another SC1 and conclusion gets another SC1

Use of *k* method with one probability quoted:

1 - 0.9891 < 5% or 0.0109 < 5% gets B0B1M1 $P(X \le k - 1) = P(X \le 3)$ so k - 1 = 3 so k = 4 (or just k = 8) so CR is {4,5,6,7,8,9,10,11,12,13,14,15, 16, 17, 18} and conclusion gets A1E1

Mark Scheme

June 2012

Two tailed test done but with correct $H_1: p > 0.05$ Hyp gets max B1B1B1if compare with 5%ignore work on lower tail and mark upper tail as per scheme but withhold A1E1if compare with 2.5%no marks B0B0M0A0E0

Line diagram method

B1 for squiggly line between 3 and 4 or on 4 exclusively (ie just one line), B1*dep* for arrow pointing to right, M1 0.0109 seen on diagram from squiggly line or from 4, A1E1 for correct conclusion

Bar chart method

B1 for line clearly on boundary between 3 and 4 or within 4 block exclusively (ie just one line), B1*dep* for arrow pointing to right, M1 0.0109 seen on diagram from boundary line or from 8, A1E1 for correct conclusion.

Using P(Not faulty) method

H₀: p=0.95, H₁: p<0.95 where p represents the prob that a frame is faulty gets B1B1B1. P(X \leq 14)=0.0109 < 5% So significant, etc gets B1B1M1A1E1

<u>NB</u>

If H₀: p=0.5, H₁: p>0.5, etc seen, but then revert to 0.05 in working allow marks for correct subsequent working. However if 0.5 used consistently throughout, then max B1 for definition of p and possibly B1 for notation P($X \ge 4$).